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MEAN LINE PUMP FLOW MODEL IN ROCKET ENGINE SYSTEM SIMULATION

Joseph P. Veres and Thomas M. Lavelle
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

ABSTRACT

A mean line pump flow modeling method has been developed to provide a fast capability for
modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has
been written that can predict the performance of pumps at off-design operating conditions, given the loss
of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and
centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup
and computer run time, and is an effective analysis and conceptual design tool. The map generation
capability of the code provides the map information needed for interfacing with a rocket engine system
modeling code. The off-design and multistage modeling capabilities of the code permit parametric design
space exploration of candidate pump configurations and provide pump performance data for engine
system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System
Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line
pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key
pump performance information directly to the system model at all operating conditions.

INTRODUCTION

The mean line pump flow code PUMPA has been coupled to the Numerical Propulsion System
Simulation (NPSS) system model of an expander cycle and has eliminated the need for pump maps in
the model. The pump code also provides detailed pump flow information to the pump designer at all
conditions along the rocket engine operating line. During the conceptual design of liquid propellant rocket
engine systems, the performance of the propellant feed pumps at both the design and at several off-
design operating conditions may be of equal importance. The operating range of the pump can be a
design consideration that can influence the geometric design of the pump. By knowledge of the pump
performance at off-design, or throttled engine conditions, the designer can optimize the pump geometric
configuration to provide acceptable pump and system performance for a range of engine operating
conditions. This ability to predict pump off-design performance is necessary for system evaluation of
candidate pump configurations within rockets. A one-dimensional mean line flow modeling code for
pumps PUMPA, has been written to provide a rapid evaluation of candidate pump design concepts and is
described in detail in reference 1. Reference 1 contains a description of the capabilities of the PUMPA
code and the model equations with the definition of the variables. Included in reference 1 are validation
cases from cryogenic rocket engine pumps and research pumps that have been flow modeled with the
PUMPA model during the computer code development and validation.

The pump code is based on the Euler equation coupled with empirical correlations for rotor
efficiency. The code can estimate the off-design characteristic performance map. The match between the
pump rotor and the diffusion system influences the shape and slope of the pump map and can effect the
location of the stall and cavitation inception lines. The suction performance at off-design conditions is
based on an empirical correlation to the suction performance at the design condition. The pump operating
condition where the static pressure is equal to the vapor pressure, determines the cavitation inception
point. Using the pump code in a design environment, the pump configuration can be quickly optimized by
an experienced designer, to result in an acceptable system performance by the use of this multi-stage
mean line flow modeling method. The flow path, blade inlet and exit angles and the number of stages can
be manually varied by the designer until an acceptable configuration is achieved that will meet the overall
rocket engine system requirements.
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The pump code has been integrated into the NPSS engine system model in order to demonstrate
its use in a system level design environment. An NPSS thermodynamic cycle model of an expander cycle
pump-fed rocket engine has been created at NASA Glenn Research Center. This rocket engine has many
similarities to the 16,500 Lbf thrust engine that was modeled in reference 2. The NPSS model uses the
PUMPA mean line flow code to estimate the pump performance, instead of the traditional technique of
representing a pump with head-flow-efficiency maps. In this method, the NPSS engine system model
passes the pump inlet boundary conditions to the pump code, executes the pump code, and receives
back the pump exit flow conditions required by the NPSS system model. Several iterations are required
between the pump code and the system model of the rocket engine to reach convergence. Only the
0-dimensional information is passed to the NPSS model from the pump code at the operating point being
modeled by the NPSS system model. The pump code calculates the exit pressure, temperature, and
torque and passes it to the NPSS system model. In traditional system models, this information is obtained
from the pump performance maps, which are usually part of the rocket engine system model. In addition
to providing the required system level 0-dimensional data to the system model, the more detailed
1-dimensional flow conditions that include velocity vector data are also generated by the pump code and
written to a detailed output listing. This more detailed output listing from the pump code provides the
pump designer with the static and total fluid conditions of pressures and temperatures, absolute and
relative velocity vectors and flow angles at key locations within the pump at the point of engine operation
being modeled. The output listing enables the pump designer to gain further insight into the detailed
performance of the pump at the actual engine operating condition being modeled.

NUMERICAL PROPULSION SYSTEM SIMULATION (NPSS)

The NPSS Version 1 is a full-featured nonlinear engine system simulation package, developed
through a cooperative effort between NASA and industry (refs. 3 to 5). The first application of the NPSS
has been to air-breathing gas turbine engines, but work is currently underway to develop component
models and thermodynamic packages to support rocket engine system simulation as well.

Because the NPSS was developed to provide complete modeling flexibility, no changes to the
software framework are required to simulate space rocket engine propulsion systems. One of the first
demonstrations of the NPSS rocket modeling capabilities was the expander cycle system illustrated in
figure 1. The mean line PUMPA code is generally considered one-dimensional, while the NPSS cycle
model is considered zero-dimensional. Since the PUMPA code is of higher fidelity than the NPSS cycle
model, the output data has to be averaged, before being passed to the NPSS system model. The
averaging is performed within the PUMPA code. The boundary condition data transfer between codes of
different levels of fidelity is referred to as “zooming”. The zooming linkage between NPSS and the
PUMPA analysis code can be accomplished fairly easily. There were many methods the linkage between
NPSS and the PUMPA code could have been accomplished. The first possible method was to use
PUMPA to update the calculated design values that are used to modify maps. In this mode the cycle
would be run in the design mode and the boundary conditions for the PUMPA model would have been
determined by the NPSS system model. These values would be used by PUMPA to determine new
design parameters. This method assumes that the pump map shape is more or less correct and that the
main effects of a design change can be seen by changes in the design parameters. These parameters
would then be used to determine a design scalar that would be used by the map at off-design operating
conditions. The second method would be to use the PUMPA code to update both the design and off-
design conditions. In this mode the cycle would be run to convergence in both the design and off-design
modes. The PUMPA code would then be run with the converged conditions and map off-sets would be
calculated to make the map data match. This method would be similar to a numerical data reduction. This
method would probably work best when the higher order code (e.g., PUMPA code) takes a long time to
run or produces numerically noisy results (the noise could cause solver convergence problems). Both of
these issues could make it problematic to include a higher order simulation inside the NPSS solution loop.
This method also assumes that the original map will not be modified too drastically. The third possible
method, and the one that was used in this demonstration, is a straight substitution of the PUMPA analysis
code for a map-based NPSS element. This is the most straight forward method of linking the two codes. It
does not require the user to have a map already in place within the NPSS system model to use as a
starting point. However, it does assume that PUMPA code runs quickly and boundary condition data
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transfer is clean enough to be included in the solver iteration process. This method of linking (or zooming)
of the two codes has the potential to eliminate the need for maps in the engine cycle simulation.

.    

Figure 1.—Schematic illustrating an expander cycle rocket engine modeled with the NPSS system model. The fuel
(liquid hydrogen) pumps 1 and 2 and the LOX (liquid oxygen) pumps are modeled with the PUMPA mean line pump
flow code.

Initially the codes were linked together using the third method, a direct substitution. The NPSS
code has its own programming language in which user commands and instructions are processed at run
time and do not have to be compiled beforehand (interpreted language). Using the NPSS interpreted
language it was easy to create a wrapper for the PUMPA code and include it as an element in the NPSS
cycle code. In fact, this was done keeping PUMPA as a stand alone executable by having NPSS write out
and read in PUMPA input and output files. However, when this was done the overall NPSS cycle model
would not converge. Analysis of the resulting error terms showed that the cycle was able to get close to
convergence since all but two of the error terms were within the prescribed tolerance and the last two
were also close. This seems to indicate that the NPSS/PUMPA combination was too noisy for the NPSS
solver. Further examination indicates that the problem is most likely that the NPSS code is not providing
the inlet conditions it passes to the PUMPA code with enough significant figures during convergence,
causing noise in the error terms. Although this problem will be addressed shortly, it could not be solved in
time for this paper due to time constraints. However, this highlights an important fact mentioned above.
When new tools are to be included inside the NPSS convergence loop, the result must not be noisy. For
example, specifying the inlet pressure, temperature and flow rate to two decimal places is usually
acceptable for a the stand-alone analysis code, but may not be adequate for the NPSS solver since it can
cause noise during convergence.

The next method tried was the second method in which PUMPA was used to determine map
adjustment factors. With this method the cycle was run with its original maps. The converged cycle data
was then used to determine the input conditions for PUMPA. The PUMPA output conditions are then
used to determine map adjustment values. The cycle is then rerun using the map adjustment values.

It is important to note that including PUMPA in the cycle is only part of the job. Once the
combined system model was created, the cycle analyst had to work with the PUMPA code expert to reach
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good results. Therefore, the combined NPSS/PUMPA system of codes did not eliminate the need for
individual expertise. However, what the combined system did was make it much easier for the two experts
to work together in a fast and seamless computing environment. The collaboration could now center on
engineering issues completely and quickly without having to worry about computer science, data transfer,
and other collaboration overhead issues. In addition, it eliminated the possibility of human error in the
transfer of data between the higher fidelity component code and the thermodynamic engine system
model.

The NPSS software continues to evolve. Its ultimate goals include integration of even higher
fidelity codes than the PUMPA code, including two and three dimensional, as well as multidisciplinary
analysis tools, in a common system simulation framework. The software is being designed to run on a
distributed network of computers, taking full advantage of parallel processing for fast turn-around of
results. These advanced computing capabilities hold great promise for accurate simulation of both air-
breathing as well as space propulsion systems, and for reducing the design time of new aerospace
propulsion systems.

LIQUID OXYGEN AND LIQUID HYDROGEN TURBOPUMPS

The rocket engine propellants are liquid oxygen and liquid hydrogen. The liquid oxygen is
pumped with an inducer followed by a single stage centrifugal pump, as is illustrated in figure 2.
Downstream of the centrifugal impeller there is a vaneless diffuser followed by a volute collector. Figure 2
also illustrates the head-flow-speed map of the oxygen pump that was generated using the PUMPA code
(version 1.1). The pump map is only shown for illustration purposes, since as mentioned earlier, the
current methodology implemented into the NPSS rocket engine system model does not use a map to
define the characteristic performance of the pump components in the engine system. Instead, the NPSS
engine code obtains the performance from the PUMPA code (version 1.3) at a point along the operating
line that is being modeled by the system model. The PUMPA models of the oxygen pump have been
successfully integrated with the NPSS rocket engine system model.

        

Figure 2.—Liquid oxygen pump featuring an inducer and a centrifugal impeller, and head-flow-speed performance
map generated with the PUMPA model.

The pump map illustrates the characteristic performance map of the oxygen pump for a range of
speeds and flows. Input parameters into the oxygen pump mean line model include the inlet and outlet
radii and blade angles at the rotor inlet and outlet planes. The PUMPA code input and output
requirements are described in detail in reference 1. Operating conditions of inlet pressure, temperature,
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mass flow and shaft rotational speed for the pump are obtained from the NPSS system model. The
PUMPA code is called from and executed by the NPSS system code to calculate the pump performance
at each operating condition. The PUMPA code returns three key parameters to the NPSS system model:
exit pressure, exit temperature and shaft power. Numerous other pump parameters are calculated by the
PUMPA model at that operating condition and are printed to the detailed pump output file. The detailed
output is for the benefit of pump designers to gain improved insight into the pump’s performance and
includes velocity triangles at the rotor inlet and exit, as well as local fluid conditions at key locations within
the pump stage. Table 1 below is a summary of key performance parameters of the oxygen pump from
the PUMPA model.

Table 1.—Oxygen pump key performance parameters obtained from the PUMPA model, and input parameters from
the NPSS system model.

Pump Inlet Conditions From the NPSS System Model:

Shaft Speed, Rotations / Minute (RPM)   12900.00
Inlet Pressure, Pounds Force / Square Inch Actual (PSIA)   40.00
Inlet Temperature, Degrees Rankine (R)  175.00
Mass Flow,    Pounds Mass / Second (Lbm / Sec) 28.00
Flow, Gallons / Minute (GPM) 182.22

Pump Outlet Conditions Sent From the PUMPA code to the NPSS:

 Pressure     Head Temperature Horsepower
 (PSIA) (Feet) (R) (HP)

Oxygen Inducer  99.44   124.08  175.38 8.74
Oxygen Centrifugal  608.99  1063.96 179.05 75.67
Overall Oxygen Pump  608.99 1188.04 179.05 84.41

The liquid hydrogen pump consists of an axial flow inducer followed by two back-to-back
centrifugal impellers (fig. 3). The inducer and the first centrifugal impeller are tightly coupled and act as
one impeller with an axial inducer section. The second centrifugal stage has no axial inducer.
Downstream of the centrifugal impellers there are vaneless diffusers followed by volute collectors.

Figure 3.—Liquid hydrogen pump featuring an axial flow inducer and two centrifugal impellers with volutes.
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The liquid hydrogen pump was modeled as two separate stages with the PUMPA code to
facilitate modeling the inter-stage bleed with the NPSS system model. The first stage included the inducer
and the first centrifugal impeller followed by a volute. The PUMPA code was run as part of the NPSS
system simulation as two separate stages. As in the case of the oxygen pump, the inlet conditions for the
first stage hydrogen pump were obtained from the NPSS system model. The pump code then solved for
the exit conditions from the first hydrogen stage, and used these quantities as inlet conditions for the
second stage hydrogen pump. Similarly, the exit conditions from the second stage hydrogen pump were
calculated by the pump flow code, and transferred to the NPSS system model. These iterative steps were
repeated numerous times, until convergence was reached in the NPSS system model. One of the
convergence criteria in the NPSS model is the power balance between the pumps and the turbines, since
these quantities have to be matched within an acceptable tolerance in order for the engine system to
operate at a steady-state operating point. The performance maps that were generated (PUMPA version
1.1) for the two hydrogen stages are illustrated in figure 4. Table 2 below is a summary of key
performance parameters of the hydrogen pump from the PUMPA (version 1.3) model.

Figure 4.—Liquid hydrogen pumps 1 and 2. Head-flow-speed performance map generated with the mean line
PUMPA version 1.1 model.

Table 2.—Hydrogen pump key performance parameters obtained from the PUMPA model, and input parameters from
the NPSS system model.

Pump Inlet Conditions From the NPSS System Model:

Shaft Speed,  Rotations / Minute (RPM) 32500.00
Inlet Pressure,  Pounds Force / Square Inch Actual (PSIA)  28.00
Inlet Temperature, Degrees Rankine (R) 38.00
Mass Flow, Pounds Mass / Second (Lbm / Sec) 8.63
Flow, Gallons / Minute (GPM) 887.92

Pump Outlet Conditions Sent From the PUMPA code to the NPSS:

 Pressure     Head  Temperature Horsepower
 (PSIA) (Feet) (R) (HP)

Hydrogen Inducer    37.93   327.96   38.17 11.86
Hydrogen Centrifugal 1   495.38   15221.10 46.94   404.94
Hydrogen Centrifugal 2   984.25   16494.41 55.71  441.60
Overall Hydrogen Pump   984.25   32043.48 55.71  858.40
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Current efforts to successfully integrate the PUMPA models of the hydrogen pumps into the
NPSS system model are continuing. The first attempt at integration of the pump code directly under the
NPSS solver resulted in nonconvergence due to numerical instability. This appears to be due to the
accuracy of the boundary condition data transferred between the PUMPA code and the NPSS code. This
is being addressed by increasing the number of significant digits of the data being transferred between
the two codes. The integration of the hydrogen pump models into the NPSS system model is continuing
and it is anticipated that the convergence issue will be resolved as the number of significant digits of the
boundary condition data is increased.

CONCLUDING REMARKS

A mean line method for flow modeling of pumps has been successfully accomplished for a variety
of cryogenic rocket engine turbopumps and research pumps. This mean line flow analysis method has
been programmed into the PUMPA code. The flow code can be used in the conceptual design phase of
new pumps since it requires minimal input and has fast setup and computer run times. The performance
of candidate pump configurations can be assessed to within reasonable accuracy with the mean line flow
code in a rocket engine system model environment. In addition to assessing the design point perfor-
mance, the code can predict the shape of the pump head-flow characteristic performance map and can
provide pump performance for system evaluation of the complete rocket engine. Version 1.3 of the
PUMPA code has been successfully linked to the Numerical Propulsion System Simulation (NPSS) code
in order to demonstrate rocket engine simulation capabilities of the NPSS code. This direct coupling
method enables instant transfer of key pump performance parameters from the pump code to the NPSS
model, thereby eliminating the need for pump maps in the NPSS model. This method will be refined in the
future to improve convergence by increasing the number of significant digits of the boundary conditions
being passed between the NPSS and the PUMPA codes, in order to reduce the noise currently
encountered during convergence. The coupled NPSS/PUMPA capability will enable designers to quickly
evaluate the detailed performance parameters within pump configurations in a rocket engine system
environment. It is anticipated that when fully developed, the NPSS system modeling capability will reduce
the design time required for rocket engines.
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